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Abstract
Fiber-reinforced composites (FRC) provide structural systems with unique features that
appeal to various civilian and military sectors. Often, one needs to modulate the temperature
field to achieve the intended functionalities (e.g., self-healing) in these lightweight structures.
Vascular-based active cooling offers one efficient way of thermal regulation in such material
systems. However, the thermophysical properties (e.g., thermal conductivity, specific heat
capacity) of FRCs and their base constituents depend on the temperature, and such structures
are often subject to a broad spectrum of temperatures. Notably, prior active cooling modeling
studies did not account for such temperature dependence. Thus, the primary aim of this paper
is to reveal the effect of temperature-dependent material properties—obtained via material
characterization—on the qualitative and quantitative behaviors of active cooling. By applying
mathematical analysis and conducting numerical simulations, we show that this dependence
does not affect qualitative attributes, such as minimum and maximum principles (in the same
spirit as Eberhard Hopf’s results for elliptic partial differential equations). However, the
dependence slightly affects quantitative results, such as the mean surface temperature and
thermal efficiency. The significance of our study lies in its contribution to a deeper under-
standing of thermal regulation systems in practical scenarios, offering valuable guidance and
modeling tools for researchers and practitioners aiming to refine related designs. The novelty
of our work stems from its comprehensive approach: developing a reduced-order modeling
framework that incorporates temperature-dependent material properties, using experimen-
tally measured thermal properties, and quantifying the impact of temperature dependence on
both local and global thermal fields.
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FRC Fiber-reinforced composites
GFRP Glass-fiber-reinforced polymer
IBVP Initial boundary value problem
MST Mean surface temperature
ROM Reduced-order model
TDMP Temperature-dependent material properties

Introduction andMotivation

Thermophysical properties of materials often depend on temperature. Therefore, understand-
ing howmaterials respond to changes in temperature is crucial for designing efficient systems,
predictingmaterial performance, and ensuring the safety and reliability of processes and prod-
ucts. This dependence is particularly conspicuous for fiber-reinforced composites (FRC) and
their base constituents [54]. FRCs consist of two main components: a continuous matrix,
often composed of polymers or resins, which contributes to structural integrity and cohesion,
and fiber reinforcements, typically made of various materials such as glass or carbon, which
provide stiffness and strength [2, 22, 41]. Two properties pertinent to thermal regulation in
micro-vascular composites—the main focus of this paper—are the specific heat capacity and
thermal conductivity.

Specific heat capacity is the amount of energy required—supplied as heat—to raise the
temperature of one kilogram of the material by one Kelvin, and this needed energy can
vary with temperature [27]. On the other hand, thermal conductivity measures a substance’s
propensity to transfer heat; it is the rate at which thermal energy flows through a unit area
for a unit temperature difference across the material [7]. This propensity—consequently
the thermal conductivity—can also vary with temperature [49]. The underlying physical
mechanism is that a temperature change alters either the kinetic or potential energy of the
atoms within the material, subsequently leading to a change in material properties [6, 19].
Studies conducted on a range of materials—including ceramics [10], Vanadium dioxide
(VO2) [34], coal and rocks [51], carbon composites [1] and polymers [17, 23]—have reported
changes in material properties (such as thermal conductivity, diffusivity, and specific heat
capacity) due to change in temperature. As a result, parameter estimation techniques based on
inverse methods have been developed to estimate temperature-dependent thermal properties
[9, 21].

This paper primarily focuses on understanding the effect of temperature-dependent ther-
mophysical properties on thermal regulation in microvascular polymer-matrix composites.
To understand the importance of our work, it is worth looking at how thermal regulation is
essential for optimal performance and long-term sustainability in numerous synthetic and
natural systems. Thermal regulation is inherent to mammals and birds, enabling them to
adapt to temperature variations [52]. The legs of birds serve as controlled heat conduits that
play an important role in thermoregulation [25, 45]. Thermal regulation based on fluid flow
in an embedded vasculature (i.e., active cooling) is also central to how jackrabbits adapt to
desert climate [20] and how the human body maintains homeostasis [18], to name a few.

In numerous contemporary technologies, the combination of compact dimensions and
enhanced operational capabilities constitutes a major challenge in addressing device over-
heating [42]. For instance, state-of-the-art high-energy-density lithium-ion batteries produce
more heat than conventional batteries, and the performance of these batteries and the structural
integrity diminish at higher temperatures [3, 33]. Thus, to make these emerging technolo-
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gies successful, designers integrate thermal regulation systems into product development to
achieve high efficiency while minimizing energy consumption. Several possible innovative
techniques exist for thermal regulation in synthetic materials, for example, thermal control
coatings, thermal metamaterials, thermal switches, and reciprocating airflow [26, 28, 43, 53].

However, bio-inspired thermal regulation offers attractive and cost-effective solutions for
synthetic material systems [11, 31, 46]. This approach entails the circulation of a coolant
through a network to control temperature, emulating the circulatory system found in living
organisms. Over the past few decades, researchers have made significant advancements in
bringing fluid-induced vascular-based thermal regulation to numerous applications: nano-
satellites [47], batteries [40], microelectronics [44], and space probes [13]. Within these
vascular-based systems, a network of micro-channels is incorporated into the synthetic mate-
rial utilizing the latest progress in additive manufacturing techniques [15, 32, 38, 39]. The
flow of a coolant through vasculature has a dual effect on the temperature of the surrounding
material. Firstly, it extracts heat directly from the thermally loaded material [35, 37]. Sec-
ondly, it facilitates the redistribution of heat between hotter and colder regions within the
domain [4].

Given the complexity of thermal regulation, modeling plays a crucial role, and duly,
various modeling approaches have been previously employed [24, 29]. However, prior mod-
eling efforts on vascular-based thermal regulation did not account for temperature-dependent
material properties. Three prior studies that are closely connected to this paper need to be
addressed when introducing temperature-dependent material properties, as they previously
assumed constant values sampled at ambient temperature.

First, [29] has presented a mathematical model to describe the steady-state response of
a vascular-based thermal regulation system; the cited paper has also established qualitative
mathematical properties—such as the minimum and maximum principles—that the steady-
state solutions satisfy. Thus, a mathematical-related question is:

(Q1) Do the minimum and maximum principles hold for thermal regulation even under
temperature-dependent material properties?

Second, [31] have recently shown that the mean surface temperature (MST) and the outlet
temperature remain invariant under flow reversal (i.e., swapping the locations of the inlet and
outlet), assuming the material properties were independent of temperature. Duly, a natural
question to ask is:

(Q2) How do temperature-dependent material properties affect the two invariants (i.e., MST
and outlet temperature) under flow reversal?

Third, [30] have performed an adjoint-state-based sensitivity analysis to unravel the
non-monotonic behavior of the host material’s thermal conductivity to the MST without
considering the temperature-dependent material properties. Thus, besides studying qualita-
tive properties, it is also necessary to undertake a quantitative investigation. The third and
final question is:

(Q3) Howdoes accounting for temperature-dependentmaterial properties affect active cool-
ing performance quantitatively?

This study addresses critical questions about the thermal behavior of active cooling systems
based on vascularization. Our methodology combines mathematical analysis with detailed
simulations, emphasizing a comprehensive approach. Key innovations include: (a) Develop-
ing a reduced-order mathematical model that incorporates temperature-dependent material
properties. (b) Using experimentally measured thermal properties. (c) Analyzing the impact
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Fig. 1 Problem setup: The figure illustrates a thin domain � of area 100mm x 100mm and thickness d. The
lateral boundaries ∂� are adiabatic. A U-shaped vasculature � with spacing s is embedded with an inlet and
outlet through which coolant flows. n̂±(x) denote the unit normals on either side of � and the tangent vector
along the vasculature is denoted bŷt(x). A constant heat flux is applied on the bottom face of the domain, and
the top surface is free to radiate and convect

of temperature dependence on both local and global thermal fields (e.g., temperature and heat
flux). The insights gained advance our understanding of vascular-based active cooling strate-
gies. Moreover, the modeling framework and results provide valuable tools for optimizing
and refining such systems.

The layout of the rest of this paper is as follows. We introduce a mathematical model that
describes thermal regulation in thin vascular systems, considering temperature-dependent
material properties (§2). Next, we present thermal characterization results, showing how the
specific heat capacity and thermal conductivity vary with temperature for CFRP, GFRP, and
epoxy (§3). Subsequently, we establish minimum and maximum principles for steady-state
solutions, extending the previously known results for constant material properties to the
case of temperature-dependent material properties—answering the first question (§4). Using
numerical simulations, we then address the last two questions (§5–§7). Finally, we draw
concluding remarks and propose potential future work (§8).

Temperature-Dependent Reduced-Order Model

Consider a slender body with thickness d , as shown in Fig. 1. The body contains an
embedded vasculature—a network of channels that carry coolant to modulate the temper-
ature field. We treat the embedded vasculature as a curve, meaning that we do not resolve
the flow characteristics across the cross-section of the vasculature. The slenderness assump-
tion, along with treating the vasculature as a curve, renders a complete three-dimensional
analysis unnecessary for modeling thermal regulation in thin vascular systems. Rather a two-
dimensional description will be adequate. Accordingly, we utilize the mathematical model
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proposed by [29] and modify it to incorporate temperature-dependent material properties.
Henceforth, we refer to the resulting mathematical description as the reduced-order model
(ROM).

Notationally, we denote the two-dimensional mid-surface—referred to as the domain—�,
and the domain’s external boundary ∂� := � \�, where an overline denotes the set closure.
We use x ∈ � to depict a spatial point, and t ∈ [0, T ] is the time, with T denoting the length
of the time interval of interest. ∂(·)/∂t stands for the partial derivative in time, and grad[·]
and div[·] represent the spatial gradient and divergence operators, respectively. ϑ(x, t) and
q(x, t) are, respectively, the temperature and heat flux vector fields defined at a spatial point
x and at time instance t .

We assume the external boundary (∂�) is piece-wise smooth with the unit outward normal
vector n̂(x) defined everywhere on ∂� except at corners. Regarding boundary conditions, the
external boundary is decomposed into complementary parts: �ϑ and �q . �ϑ denotes the part
of the boundary on which the Dirichlet boundary condition is enforced (i.e., temperature is
prescribed), and �q is that part of the boundary on which the Neumann boundary condition
is enforced (i.e., heat flux is prescribed). For mathematical well-posedness, we require that
�ϑ ∪ �q = ∂� and �ϑ ∩ �q = ∅.

We denote the curve representing the vasculature by� witĥt(x) denoting the unit tangent
vector along the vasculature; see [31, SI] for a discussion on how to mathematically define
̂t(x). We parameterize � using the arc-length s starting from the inlet; patently, s = 0
corresponds to the inlet. To achieve active cooling, a fluid flows through the vasculature
where ρ f and c f denote the density and specific heat capacity of this fluid, respectively.
The vasculature’s inlet and outlet are on the lateral sides of the domain. ϑinlet denotes the
prescribed temperature at the inlet, while the outlet temperature is unknown a priori and is
part of the solution of the mathematical model. We utilize the jump operator to write the
balance laws across the vasculature (i.e., jump conditions). Given a scalar field α(x, t) and a
vector field a(x, t), the jump operator is defined as follows:

�α(x, t)� = α+(x, t) n̂+(x) + α−(x, t) n̂−(x) (1a)

�a(x, t)� = a+(x, t) · n̂+(x) + a−(x, t) · n̂−(x) (1b)

where · denotes the standard inner product, n̂±(x) are unit normal vectors on either side of
the vasculature, and α±(x, t) represent the limiting values of the scalar field on either side
of �. A similar definition holds for a±(x, t). For further details on the jump operator, refer
to [29, 30].

Besides the heat transported by the flowing fluid (i.e., active cooling), there are three
other modes of heat transfer: the bottom surface is subject to applied heat flux, the host
solid can conduct heat, and the top surface is free to convect and radiate. hT denotes the
heat transfer coefficient, ε the emissivity, and σ ≈ 5.67 × 10−8 Wm−2K−4 the Stefan-
Boltzmann constant. It is reasonable to assume that hT and ε, which are not properties of the
bulk material, do not depend on temperature, at least for the range considered in this paper
[12]. ρs denotes the density of the host solid, while K

(

x, ϑ(x, t)
)

and cs
(

ϑ(x, t)
)

represent
the temperature-dependent thermal conductivity and the specific heat capacity of the host
solid, respectively.

Physics demands that cs
(

ϑ(x, t)
)

is positive and K
(

x, ϑ(x, t)
)

is symmetric and positive
definite. For mathematical analysis, we, however, require a stronger condition: the thermal
conductivity is uniformly elliptic [16]. That is, there exists a constant k1 > 0 such that:

0 < k1y · y ≤ y · K(

x, ϑ(x, t)
)

y ∀y \ {0} ∈ R
2 (2)
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whereR2 denotes the two-dimensional Euclidean space. In some sections of this paper (e.g.,
§3 and §5), we assume the thermal conductivity is isotropic:

K
(

x, ϑ(x, t)
) = ks

(

x, ϑ(x, t)
)

I (3)

where I represents the second-order identity tensor, and ks(x, ϑ) is the scalar conductivity
field.

The governing equations for the temperature-dependent ROM take the following form:

d ρs cs(ϑ)
∂ϑ

∂t
+ d div[q(x, t)] = f (x, t) − hT

(

ϑ(x, t) − ϑamb
)

− ε σ
(

ϑ4(x, t) − ϑ4
amb

) ∀x ∈ �,∀t ∈ (0, T ]
(4)

q(x, t) = −K
(

x, ϑ(x, t)
)

grad[ϑ(x, t)] ∀x ∈ �,∀t ∈ (0, T ]
(5)

ϑ(x, t) = ϑp(x, t) ∀x ∈ �ϑ,∀t ∈ [0, T ]
(6)

d q(x, t) · n̂(x) = qp(x, t) ∀x ∈ �q ,∀t ∈ [0, T ]
(7)

�ϑ(x, t)� = 0 ∀x ∈ �,∀t ∈ [0, T ]
(8)

d �q(x, t)� = χ grad[ϑ] ·̂t(x) ∀x ∈ �,∀t ∈ [0, T ]
(9)

ϑ(x, t = 0) = ϑinitial(x) ∀x ∈ �

(10)

ϑ(x, t) = ϑinlet at inlet,∀t ∈ [0, T ]
(11)

where f (x, t) denotes the applied heat flux on the bottom surface, ϑamb the ambient tem-
perature, ϑinitial(x) the prescribed initial temperature distribution, ϑp(x, t) the prescribed
temperature on the boundary, qp(x, t) the prescribed heat flux on the boundary, and χ the
heat capacity rate, defined as follows:

χ = ρ f Q c f (12)

with Q denoting the volumetric flow rate.
Equation (4) is the balance of energy, accounting for conduction, convection, radiation,

applied heat flux, and increase in internal energy. Equation (5) represents the Fourier model,
describing the heat conduction. Equations (6) and (7) are the boundary conditions, while
Eqs. (8) and (9) are the jump conditions for the temperature and the heat flux, respectively.
The next two equations represent the initial condition and the prescribed temperature at the
inlet. The temperature for classical (i.e., non-spin) systems is positive when measured in
the Kelvin scale [27]. This non-negative physical constraint will be crucial in establishing
minimum and maximum principles (see §4).

Since the thermal conductivity could depend on the temperature, the above initial boundary
value problem (IBVP) is, in its generality, a quasi-linear parabolic differential equation [36].
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Fig. 2 Solid host material properties: This figure shows the variations of the A) specific heat capacity and B)
thermal conductivity— in the temperature range 296.15-−423.15 K for three candidate host materials: CFRP,
GFRP, and epoxy. The specific heat capacity varies significantly with temperature for all three materials.
However, the thermal conductivity remains relatively constant except for CFRP

Temperature-Dependent Material Properties

As previously stated, the thermophysical properties of CFRP, GFRP, and epoxy—common
structural composites and polymer matrix material—are known to depend on the temper-
ature. Therefore, we have utilized the facilities at the Thermophysical Properties Research
Laboratory to perform thermal characterization of thesematerials [48]. Specific heat capacity
and thermal conductivity were measured in the range from room temperature (RT ≈ 296.15
K) to 423.15 K.

A Perkin-Elmer Differential Scanning Calorimeter (ASTM E1269), with sapphire as the
referencematerial, was used tomeasure the specific heat capacity (cs) of these threematerials.
As shown in Fig. 2A, the specific heat capacity for all three materials strongly depends on the
temperature, with epoxy having the maximum variation. To facilitate numerical simulations
and reveal the variation’s nature, we provided an interpolation function (i.e., a polynomial
fit) to capture the trend for each material.

The thermal diffusivity (α) was measured using the laser flash method. The bulk density
(ρs) was estimated directly from the sample’s geometry and mass. Then, the thermal conduc-
tivity (ks) was calculated as a product of the bulk density, specific heat capacity, and thermal
diffusivity (i.e., ks = ρs cs α). As shown in Fig. 2B, the temperature had minimal impact on
the thermal conductivity of epoxy and GFRP, whereas CFRP had a notable variation in the
chosen temperature range.

For water (i.e., the coolant), we took the density and specific heat capacity values for
the temperature range 0–100 ◦C from [50] and [14], respectively. As shown in Fig. 3, the
heat capacity rate did not change appreciably with temperature for a volumetric flow rate
of Q = 1mL/min, which lies in the typical range of flow rates used for active cooling of
microvascular composites [11]. Therefore, we took the coolant’s material properties to be
constant in the rest of this paper.

In the subsequent sections, we investigate how the temperature-dependent properties
impact the active cooling performance.
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Fig. 3 Liquid coolant (fluid) properties: A) The density and specific heat capacity of water (coolant) vary
only 4.30% and 0.95%, respectively, over the temperature range 0–100 ◦C. These data were sourced from
[50] and [14], respectively. B) The heat capacity rate (i.e., the product of the density, specific heat capacity,
and the volumetric flow rate) also varies merely 4.39% over the chosen temperature range for the volumetric
flow rate Q = 1mL/min. Hence, in this paper, we have taken the fluid’s heat capacity, which is an input to
the mathematical model, to be constant

Minimum andMaximum Principles

Recently, [29] has established minimum and maximum principles under steady-state regime
for constant material properties. This section shows that such minimum and maximum prin-
ciples hold even when the material properties depend on the temperature.

In the steady-state regime, the governing equations of the mathematical model take the
following form:

−d div
[

K
(

x, ϑ(x)
)

grad[ϑ(x)]] = f (x)

− hT
(

ϑ(x) − ϑamb
) − ε σ

(

ϑ4(x) − ϑ4
amb

) ∀x ∈ � (13a)

ϑ(x) = ϑp(x) ∀x ∈ �ϑ (13b)

−d n̂(x) · K(

x, ϑ(x)
)

grad[ϑ(x)] = qp(x) ∀x ∈ �q (13c)

�ϑ(x)� = 0 ∀x ∈ � (13d)

−d �K
(

x, ϑ(x)
)

grad[ϑ(x)]� = χ grad[ϑ] ·̂t(x) ∀x ∈ � (13e)

ϑ(x) = ϑinlet at inlet (13f)

To establish the mentioned principles, we appeal to the Galerkin weak formulation.
Accordingly, we use L2(K) to denote the set of square-integrable functions defined on K.
That is,

L2(K) :=
{

u(x) : K → R

∣

∣

∣

∫

K
u2(x) dK < +∞

}

(14)

H1(K) denotes the space of square-integrable functions defined on K with their first (weak)
derivatives also square-integrable. Mathematically,

H1(K) :=
{

u(x) ∈ L2(K)

∣

∣

∣

∫

K

∥

∥grad[u(x)]∥∥2 dK < +∞
}

(15)
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In the mathematics literature, L2(K) and H1(K) are called Sobolev spaces, which are them-
selves Hilbert spaces, and they offer an appropriate functional analytical setting to study
partial differential equations [5].

We then define the following spaces for the trial and test functions, respectively:

U := {

ϑ(x) ∈ H1(�) | ϑ(x) = ϑp(x) on �ϑ and ϑ(x) = ϑinlet at s = 0 on �
}

(16)

W := {

w(x) ∈ H1(�) | w(x) = 0 on �ϑ and w(x) = 0 at s = 0 on �
}

(17)

Under steady-state conditions, the Galerkin weak formulation reads: Find ϑ(x) ∈ U such
that we have

∫

�

d grad[w(x)] · K(x, ϑ(x)) grad[ϑ(x)] d� +
∫

�

hT w(x) (ϑ(x) − ϑamb) d�

+
∫

�

ε σ w(x)
(

ϑ4(x) − ϑ4
amb

)

d� +
∫

�

χ w(x) grad[ϑ(x)] ·̂t(x) d�

=
∫

�

w(x) f (x) d� −
∫

�q
w(x) qp(x) d� ∀w(x) ∈ W (18)

where w(x) represents the weighting (or test) function.

Theorem 4.1 (minimum principle) Let ϑ(x) be a non-negative solution of the boundary value
problem (13a)–(13f) under f (x) ≥ 0, qp(x) ≤ 0, and ϑamb > 0. Then, the solution field is
bounded below by

min
[

ϑamb, ϑinlet, min
x∈�ϑ

[ϑp(x)]
]

≤ ϑ(x) ∀x ∈ � (19)

Proof For convenience, we denote the targeted lower bound by

�min := min
[

ϑamb, ϑinlet, min
x∈�ϑ

[ϑp(x)]
]

(20)

We also define the following field variable:

β(x) := min
[

0, ϑ(x) − �min

]

(21)

The above definitions imply that establishing the minimum principle is equivalent to showing
that

β(x) = 0 ∀x ∈ � (22)

To prove that β(x) vanishes, we first note the following properties, which directly stem
from Eqs. (21) and (22):

β(x) ≤ 0 ∀x ∈ � (23)

β(x) = 0 ∀x ∈ �ϑ (24)

β(x) = 0 at the inlet (i.e., s = 0 on �) (25)

Further, at any spatial point, we have

either β(x) = 0 or ϑ(x) = β(x) + �min (26)

The second property (i.e., Eq. (24)) implies that β(x) ∈ W . Taking w(x) = β(x) in Eq. (18),
we arrive at the following:
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∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[ϑ(x)] d� +
∫

�

hT β(x) (ϑ(x) − ϑamb) d�

+
∫

�

ε σ β(x)
(

ϑ4(x) − ϑ4
amb

)

d� +
∫

�

χ β(x) grad[ϑ(x)] ·̂t(x) d�

=
∫

�

β(x) f (x) d� −
∫

�q
β(x) qp(x) d� (27)

Noting that f (x) ≥ 0, qp(x) ≤ 0, and the non-positivity of β(x) (i.e., the first property:
Eq. (23)), we conclude that the two integrals on the right side of Eq. (27) are non-positive.
We thus write the following inequality:

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[ϑ(x)] d� +
∫

�

hT β(x) (ϑ(x) − ϑamb) d�

+
∫

�

ε σ β(x)
(

ϑ4(x) − ϑ4
amb

)

d� +
∫

�

χ β(x) grad[ϑ(x)] ·̂t(x) d� ≤ 0 (28)

In the above equation, we note that any term that contains ϑ(x) also carries β(x). The fourth
property (i.e., Eq. (26)) implies that, at any spatial point, if ϑ(x) is not equal to β(x) + �min

then β(x) = 0. Thus, replacing ϑ(x) by β(x) + �min will not alter the values of such terms.
Consequently, upon undertaking the remarked replacement, Eq. (28) turns into the following:

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β(x) (β(x) + �min − ϑamb) d�

+
∫

�

ε σ β(x)
(

β(x) + �min − ϑamb
)(

ϑ(x) + ϑamb
)(

ϑ2(x) + ϑ2
amb

)

d�

+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0 (29)

Definition (20) implies (�min − ϑamb) ≤ 0, which further implies the product β(x) (�min −
ϑamb) is non-negative. Using this result on the second integral in Eq. (29), we establish the
following inequality:

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β2(x) d�

+
∫

�

ε σ β(x)
(

β(x) + �min − ϑamb
)(

ϑ(x) + ϑamb
)(

ϑ2(x) + ϑ2
amb

)

d�

+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0 (30)

The third integral is non-negative because β(x) ≤ 0, β(x)+�min−ϑamb ≤ 0, ϑ(x)+ϑamb ≥
0 (since the solution field is non-negative and ϑamb > 0), and ϑ2(x) + ϑ2

amb ≥ 0. We thus
have

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β2(x) d�

+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0

(31)
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Since the thermal conductivity is uniformly elliptic (i.e., Eq. (2)), the above inequality implies
the following:
∫

�

d grad[β(x)] · k1 grad[β(x)] d� +
∫

�

hT β2(x) d�+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d�≤0

(32)

Integrating the third expression in Eq. (32) along the vasculature and noting β(x) vanishes
at the inlet (i.e., the third property given by Eq. (25)), we get the following:

∫

�

d grad[β(x)] · k1 grad[β(x)] d�+
∫

�

hT β2(x) d� + χ

2
β2(x)

∣

∣

∣

outlet
≤ 0 (33)

All the terms on the left side of the above inequality are non-negative. Hence, each termmust
be zero, implying that

β(x) = 0 ∀x ∈ � (34)

rendering the minimum principle to be true.

In the case of linear problems, one can obtain the maximum principle from the minimum
principle by rewriting the governing equations in terms of a new variable ϕ(x) = −ϑ(x)
and running through a similar course of the proof outlined under the minimum principle.
For example, see [29, Theorems 3.1 and 3.3] for the case of constant material properties.
Since the problem at hand is nonlinear (because of the radiation term as well as temperature-
dependent material properties), the remarked approach does not work. So, we prove the
maximum principle by alternative means, as given below.

Theorem 4.2 (maximum principle) Let ϑ(x) be a non-negative solution of the boundary
value problem (13a)–(13f) under f (x) ≤ 0 and 0 ≤ qp(x), and ϑamb > 0. Then, the solution
field is bounded above by:

ϑ(x) ≤ max
[

ϑamb, ϑinlet, max
x∈�ϑ

[ϑp(x)]
]

∀x ∈ � (35)

Proof We denote the upper bound by

�max := max
[

ϑamb, ϑinlet, max
x∈�ϑ

[ϑp(x)]
]

(36)

We also define the following field variable:

β(x) := max
[

0, ϑ(x) − �max

]

(37)

To prove the maximum principle, it suffices to show that

β(x) = 0 ∀x ∈ � (38)

We proceed by noting the following properties that β(x) satisfies:

β(x) ≥ 0 ∀x ∈ � (39)

β(x) = 0 ∀x ∈ �ϑ (40)

β(x) = 0 at the inlet (i.e., s = 0 on �) (41)

Also, at any spatial point, we have

either β(x) = 0 or ϑ(x) = β(x) + �max (42)
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Many steps below will be similar to those under the minimum principle, but accounting
for the differences (cf. Equations (20) and (36), (21) and (37), and (23) and (39)). The second
property implies that β(x) ∈ W . Taking w(x) = β(x) in Eq. (18), we write

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[ϑ(x)] d� +
∫

�

hT β(x) (ϑ(x) − ϑamb) d�

+
∫

�

ε σ β(x)
(

ϑ4(x) − ϑ4
amb

)

d� +
∫

�

χ β(x) grad[ϑ(x)] ·̂t(x) d�

=
∫

�

β(x) f (x) d� −
∫

�q
β(x) qp(x) d� (43)

Since f (x) ≤ 0,qp(x) ≥ 0, the non-negativity ofβ(x) (i.e., Eq. (39)) implies the two integrals
on the right side of Eq. (43) are non-positive. We thus have the following inequality:

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[ϑ(x)] d� +
∫

�

hT β(x) (ϑ(x) − ϑamb) d�

+
∫

�

ε σ β(x)
(

ϑ4(x) − ϑ4
amb

)

d� +
∫

�

χ β(x) grad[ϑ(x)] ·̂t(x) d� ≤ 0 (44)

In view of the fourth property (42), we replace ϑ(x) with β(x)+�max in Eq. (44) and arrive
at the following inequality:

∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β(x) (β(x) + �max − ϑamb) d�

+
∫

�

ε σ β(x)
(

β(x) + �max − ϑamb
)(

ϑ(x) + ϑamb
)(

ϑ2(x) + ϑ2
amb

)

d�

+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0 (45)

Definition (36) implies (�max −ϑamb) ≥ 0, which further implies the product β(x) (�max −
ϑamb) is positive. Using this result on the second and third integrals in Eq. (45), we realize
the following inequality:
∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β2(x) d�

+
∫

�

ε σ β2(x)
(

ϑ(x) + ϑamb
)(

ϑ2(x) + ϑ2
amb

)

d� +
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0

(46)

Since ϑ(x) and ϑamb are non-negative, the third integral is non-negative. We thus have
∫

�

d grad[β(x)] · K(x, ϑ(x)) grad[β(x)] d� +
∫

�

hT β(x)2 d�

+
∫

�

χ β(x) grad[β(x)] ·̂t(x) d� ≤ 0

(47)

Invoking the uniform ellipticity of the conductivity tensor (i.e., Eq. (2)), integrating the third
expression in Eq. (47), and simplifying the resulting expression using the third property (41),
we get:

∫

�

d grad[β(x)] · k1 grad[β(x)] d�+
∫

�

hT β2(x) d� + χ

2
β2(x)

∣

∣

∣

outlet
≤ 0 (48)
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Similar to the case in the minimum principle, all the terms on the left side of the above
inequality are non-negative. Hence, each term must be zero, implying that

β(x) = 0 ∀x ∈ � (49)

Thus, the maximum principle is established.

The two theorems presented above show that the response to the initial question (Q1)
is in the affirmative—the minimum and maximum principles hold even with the chosen
temperature-dependent material properties under a steady-state response.

Remark 4.1 For the proof of minimum and maximum principles, if the radiation is absent
(i.e., ε = 0), then the “non-negative” requirement for the solution field can be dropped from
the hypothesis of Theorems 4.1 and 4.2.

Representative Test Problems

We now outline canonical problems, guided by previous active-cooling experiments (e.g.,
[11, 31]), that will be used to show how the temperature-dependent material properties affect
the solution fields, quantitatively and qualitatively.

Consider a square computational domain of size 100mm×100mm with thickness d = 5
mm. The entire lateral boundary is adiabatic (i.e., qp(x, t) = 0 and �q = ∂�), a source
supplies heat to the bottom surface, and the top surface is free to convect and radiate. The
domain consists of an embedded vasculature. A fluid flows through the vasculature, starting
from the inlet and exiting the domain at the outlet. To discern the effect of temperature-
dependent material properties on thermal response, we have considered

(i) three distinct vasculature layouts (i.e., U-shaped, serpentine, and asymmetric), as shown
in Fig. 4,

(ii) threematerials—CFRP,GFRP, and epoxy—toencompass a diverse thermal conductivity
range,

(iii) two heat fluxes applied separately: 1000 and 2000 W/m2, and
(iv) a representative flow rate of Q = 1 mL/min.

In all our numerical simulations, we have used the single-field Galerkin weak formulation,
the finite element method for spatial discretization, and the backward difference formula
(BDF)with the options ofmaximumorderfive andminimumorder one.Wehave implemented
the weak formulation in a 2D square domain using the “weak form PDE” utility available
in [8] and used three-node triangular elements with second-order Lagrange shape functions.
Table 1 provides the values employed in the numerical simulations.1

Effect on Thermal Invariants Under Flow Reversal

Recently, [31] have shown that the mean surface temperature (MST) and thermal efficiency
(η) remain invariant under flow reversal (i.e., swapping inlet and outlet). However, their

1 Our selection of the value for the total timeT , provided in Table 1, is based on the active-cooling experiments
reported in [11, 31]. By T = 1500 s in those experiments, the evolution of the temperature field flattened,
indicating that the system had been closer to the steady state.
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Fig. 4 Problemdescription. The figure shows three different vascular layouts used in the study:A)U-shaped,
B) serpentine, and C) asymmetric. Blue lines represent channels, which begin at the inlet and end at the outlet.
In all cases, the computational domain is a square of size 100 × 100mm with thickness d = 5mm. Active
cooling is achieved by flowing fluid into the vasculature at the inlet with fluid’s temperature equal to the
ambient (i.e., ϑinlet = ϑamb). At the bottom face, a source supplies a uniform heat flux (i.e., f (x) = f0). The
top surface is free to exchange heat via convection and radiation; the heat transfer coefficient (hT ) is assumed
to be constant. The lateral boundaries are thermally isolated (i.e., adiabatic). All the figures are drawn to the
scale

Table 1 Parameters used in numerical simulations

Parameter Value

Fluid (coolant) Water

Fluid’s density (ρ f ) 1000 kg/m3

Fluid’s specific heat capacity (c f ) 4183 J/(kg · K)

Volumetric flow rate (Q) 1 mL/min

Host material CFRP, GFRP, or epoxy

Specific heat capacity (cs ) Fig. 2A

Thermal conductivity (ks ) Fig. 2B

Heat transfer coefficient (hT ) 21 W/m2 [11]

Emissivity coefficient (ε) 0.97 [12]

Stefan-Boltzmann constant (σ ) 5.67 × 10−8 W/(m3 · K4)

Applied heat flux ( f0) 1000 or 2000 W/m2

Ambient temperature (ϑamb) 296.42 K

Time-stepping scheme backward difference formula (BDF)

Time step (�t) 1 sec

Total time (T ) 1500 secs

analysis assumes material properties are independent of temperature. This section examines
how the temperature-dependent material properties affect these two invariants.

For the temperature field ϑ(x, t), the MST is defined as follows:

ϑMST(t) = 1

meas(�)

∫

�

ϑ(x, t) d� (50)

in which meas(�) denotes the set measure of � (i.e., the area of the domain). The thermal
efficiency for active cooling applications is defined as the ratio of the rate of heat extracted by
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the coolant to the total heat supplied by the heat source, for example, see [29].Mathematically,

η := rate of heat extracted by the coolant

rate of heat supplied by the heater
(51)

where η denotes the thermal efficiency. If the lateral boundaries are adiabatic, the efficiency
takes the following form:

η(t) =
(∫

�

f (x, t) d�

)−1

χ (ϑoutlet(t) − ϑinlet) (52)

where f (x, t) denotes the applied heat source, χ is the heat capacity rate, and ϑoutlet(t) and
ϑinlet depict the outlet and inlet temperatures, respectively. Note that the outlet temperature
varies with time, and so does the efficiency. When the applied heat is constant, f (x, t) = f0,
the efficiency takes the following simplified form:

η(t) = χ (ϑoutlet(t) − ϑinlet)

meas(�) f0
(53)

The above expression reveals that for a constant inlet temperature, the efficiency is propor-
tional to the outlet temperature, implying that if the efficiency is invariant, so is the outlet
temperature.

Using the above notation, the two invariants under flow reversal take the following math-
ematical form:

• Invariant #1 — the mean surface temperature:

ϑ
( f )
MST(t) = ϑ

(r)
MST(t) ∀t (54)

• Invariant #2 — the outlet temperature:

ϑ
( f )
outlet(t) = ϑ

(r)
outlet(t) ∀t (55)

In the above equations, the superscripts “( f )" and “(r)" represent the forward and reverse
flows, respectively.

These invariants were mathematically derived assuming constant material properties [31].
Below,we investigate how these invariants under flow reversal are affectedwhen temperature-
dependent material properties are accounted for.

Numerical Verification

Figure 5 shows how the mean surface temperatures vary over time for three vascular lay-
outs. Three key observations are: i) The MST remains invariant under flow reversal even
when the material properties depend on the temperature. ii) There is no visible disparity
in MST between the constant material properties (CMP) versus the temperature-dependent
material properties (TDMP) cases for all three material systems under a lower heat flux (i.e.,
1000 W/m2). iii) Variations in the MST between the CMP and TDMP cases are evident,
particularly noticeable for GFRP in the transient regime when subjected to a higher heat flux
of 2000 W/m2. These distinctions become negligible when the system approaches a steady
state.

Figure 6 shows the temporal evolution of outlet temperatures. When operating at a lower
heat flux (1000 W/m2), the disparities in outlet temperature between the CMP and TDMP
cases are insignificant. In contrast, when exposed to a double heat flux level (2000 W/m2),

123



   37 Page 16 of 24 Int. J. Appl. Comput. Math            (2025) 11:37 

U
-s
ha

pe
d

Se
rp
en

tin
e

A
sy

m
m
et
ric

A) B) C)

G) H) I)

CFRP GFRP Epoxy

F)E)D)

Fig. 5 Flow reversal — Mean surface temperature. This figure shows the mean surface temperature over
time under forward and reverse flow conditions and for CMP and TDMP cases. We have considered all three
vasculature layouts and two applied heat fluxes: 1000 and 2000 W/m2. From the reported results, we draw
two inferences. First, the mean surface temperature (i.e., the first thermal invariant) exhibits negligible change
under flow reversal, even when the material properties depend on temperature. Second, minor differences
exist between the mean surface temperatures under TDMP and CMP cases, comparatively more in GFRP, in
the temperature range considered in this paper. Ultimately, the variation diminishes as the system approaches
steady-state

there are comparatively more pronounced differences, particularly during the middle time
period, especially for the GFRP. Nevertheless, as the system approaches a steady state, these
temperature deviations gradually diminish.

The above results answer the second question (Q2). In the chosen temperature range, the
mean surface temperature and the outlet temperature remain invariant under flow reversal
evenwhen thematerial properties depend on the temperature, similar to the previously shown
result under constant material properties.
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Fig. 6 Flow reversal—Outlet temperature. This figure shows the outlet temperature over time under forward
and reverse flow conditions and for CMP and TDMP cases. We have considered all three vasculature layouts
and two applied heat fluxes: 1000 and 2000 W/m2. From the reported results, we draw two inferences. First,
the outlet temperature (i.e., the second thermal invariant) exhibits negligible change under flow reversal, even
when the material properties depend on temperature. Second, disparities can be observed in the transient state
between the outlet temperatures in TDMP and CMP scenarios, particularly in the case of GFRP. However,
these differences tend to decrease as the system approaches a steady state

Quantitative Comparisons

Figure 7 collates temperature and heat flux vector profiles for the CMP (measured at 23 ◦C)
and TDMP cases. For all three vasculature layouts, the corresponding profiles do not exhibit
notable differences, either qualitatively or quantitatively.

Figures 8 to 10 depict the time-dependent changes in thermal efficiencies for the three
vascular configurations. These visual representations also zoom on the central segments
to highlight the magnitude of fluctuations. It is evident from these graphs that, during the
transient phase, there are slight distinctions between the CMP and TDMP scenarios. But, as
time progresses towards a steady state, the disparities between the two scenarios decrease, a
pattern observed across all three materials.
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Fig. 7 Temperature contours and heat flux vector: This figure shows the temperature field and the heat
flux vectors for the three vascular layouts; the white arrows represent the heat flux vectors. The first column
collates the results under CMP, while the results in the second column are for TDMP. There are no appreciable
differences in the solution fields between the CMP and TDMP cases

Figure 11 plots the temperature along the arc-length of the U-shaped vasculature. For all
three materials (CFRP, GFRP, and epoxy) and both heat fluxes 1000 W/m2 and 2000 W/m2,
the temperature profiles along the vasculature compare well under CMP and TDMP cases.
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A) B) C)

Fig. 8 Thermal efficiency—U-shaped vasculature. For all three materials in the transient regime, the thermal
efficiency exhibits minor disparities between constant material properties (CMP) and temperature-dependent
properties (TDMP). However, this disparity in thermal efficiency diminishes as the system approaches a steady
state. This slight deviation in the intermediate phase is magnified to observe the nature of the discrepancy
more closely. In each scenario, the variation remains minimal. Also, the thermal efficiency remains nearly
indistinguishable for both heat fluxes 1000 W/m2 and 2000 W/m2

A) B) C)

Fig. 9 Thermal efficiency — Serpentine vasculature. This figure compares the thermal efficiency obtained
under constant vs. temperature-dependent material properties for three materials: A) CFRP, B) GFRP, and C)
epoxy. Two different heat fluxes are considered: 1000W/m2 and 2000W/m2. The top panel shows a zoomed
view of the temperature evolution in the transient regime. The thermal efficiency of the materials exhibits a
minor disparity in the transient regime. However, the difference fades away as the system approaches a steady
state over time
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A) B) C)

Fig. 10 Thermal efficiency—Asymmetric vasculature. The thermal efficiency of the materials exhibits more
prominent disparity in the transient regime as compared to U-shaped and serpentine vasculatures. However,
as the system approaches a steady state over time, the efficiencies converge to a uniform value. The deviation
in the intermediate phase is magnified to observe the nature of the discrepancy more closely. In each scenario,
the variations are negligible. Also, the thermal efficiency remains nearly indistinguishable for both heat fluxes
1000 W/m2 and 2000 W/m2

A) CFRP GFRP EpoxyB) C)

Fig. 11 Arc-length temperature. The arc-length temperatures for the three materials are graphed considering
U-shaped vasculature under two different heat fluxes: 1000 and 2000 W/m2. Arc-length is calculated as the
distance measured from the inlet while moving along the vasculature. It is apparent from the charts that the
influence of temperature-dependent material properties (TDMP) on arc-length temperature is not significant
compared to the constant material properties (CMP) scenario

However, temperature differences are relatively more pronounced for CFRP; nonetheless,
these differences become almost negligible towards the outlet.

For the considered temperature range and for the realistic temperature-dependence of the
material properties, there are no significant quantitative differences compared to the response
under constant material properties—answering the third question (Q3).
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Closure

This paper considered three materials: carbon-fiber-reinforced polymer (CFRP), glass-fiber-
reinforced polymer (GFRP), and epoxy. Experimental characterization has revealed that the
mentioned materials’ thermophysical properties (i.e., specific heat capacity and thermal con-
ductivity) depend on the temperature. This study revealed the ramifications of the remarked
dependence on vascular-based active cooling performance.

The main conclusions are:

(C1) In the chosen temperature range 23–150 ◦C, the specific heat capacities of the three
materials depend on the temperature, with epoxy showing stronger dependence com-
pared to CFRP and GFRP. On the other hand, the thermal conductivity of CFRP
increases mildly with temperature for the same range (approximately with a slope of
0.01), while the thermal conductivities of GFRP and epoxy do not vary appreciably
with the temperature.

(C2) For typical flow rates encountered in active cooling of microvascular composites (i.e.,
order of mL/min) and for the temperature range 23–100 ◦C, the heat capacity rate of
water—the coolant—does not vary with temperature.

(C3) The solution field under the mathematical model accounting for temperature-
dependent thermophysical properties also possesses minimum and maximum prin-
ciples under steady state, mirroring the recent findings for constant material properties
[29]. However, such principles are yet to be explored for solutions in the transient
regime, even when material properties are constant.

(C4) The temperature dependence of material properties exhibited by the three materials
does not affect the two invariants—mean surface temperature and outlet temperature—
under flow reversal, extending the previously known results for constant material
properties. Thus, these two invariants under flow reversal could still serve as a suit-
able measure for studying thermal regulation using such materials in the mentioned
temperature range.

(C5) The temperature-dependent material properties do not appreciably affect—either
qualitatively or quantitatively—the active cooling performance. Specifically, this
dependence has minimal effect on the global thermal characteristics such as the mean
surface temperature and thermal efficiency.

The novelty of this work lies in its detailed exploration of temperature-dependent ther-
mophysical properties in CFRP, GFRP, and epoxy and the implications for active cooling
systems, specifically vascular-based designs.While prior studies have considered thesemate-
rials at constant properties, our approach captures the nuanced, material-specific shifts in
specific heat and thermal conductivity with temperature. By linking these temperature-
dependent variations to active cooling performance, this study adds depth to existing
knowledge, particularly in confirming that certain cooling invariants (like mean surface and
outlet temperatures) hold even when material properties fluctuate with temperature. This is
significant as it enables more adaptable thermal management designs that remain efficient
across varying temperatures.

A plausible future work can be towards studying thermo-mechanical coupled response in
active-cooling applications, conjointly with the dependence of material properties on tem-
perature.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s40819-025-01852-7.
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